Spatial properties of flicker adaptation

نویسندگان

  • Alan E. Robinson
  • Virginia R. de Sa
چکیده

Prolonged viewing of a flickering region reduces sensitivity to a subsequently flickered test patch of identical extent, but the spatial properties of this adaptation are unknown. What happens to the sensitivity to a smaller flickered test patch completely contained in, but inset from, the adapted region? We show that sensitivity to the inset test patch is only slightly affected by adaptation of the larger region. This suggests that neurons that respond to the edges of the smaller test patch are not adapted by the larger flickering region. We then show that an annulus adapter designed specifically to adapt only those edges only slightly reduces sensitivity, demonstrating that neurons that do not adapt to the flickered edges are also involved in detecting flicker. This gives further evidence that flicker detection depends on at least two mechanisms - one sensitive to flickering edges and one sensitive to local flicker, and shows that these mechanisms can operate in isolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrast-modulation flicker: Dynamics and spatial resolution of the light adaptation process

We report a perceptual phenomenon that originates from a nonlinear operation during the visual process, and we use these observations to study the functional organization of the responsible nonlinearity; the regulation of visual sensitivity to light. When the contrast of a high frequency grating was modulated while its spatial and temporal average luminance was kept constant, observers saw brig...

متن کامل

Flicker adaptation or superimposition raises the apparent spatial frequency of coarse test gratings

Independent channels respond to both the spatial and temporal characteristics of visual stimuli. Gratings <3 cycles per degree (cpd) are sensed by transient channels that prefer intermittent stimulation, while gratings >3 cpd are sensed by sustained channels that prefer steady stimulation. From this we predict that adaptation to a spatially uniform flickering field will selectively adapt the tr...

متن کامل

Mechanisms isolated by frequency-doubling technology perimetry.

PURPOSE The frequency-doubling (FD) phenomenon describes the increase in apparent spatial frequency occurring when low-spatial-frequency sine wave gratings undergo rapid counterphase flicker. It is unclear whether the visual mechanisms isolated when pattern appearance is used as a threshold criterion are the same as when a simple detection criterion (as in FD perimetry) is used. It is also uncl...

متن کامل

Properties of Flicker ERGs in Rat Models with Retinal Degeneration

Purpose. To describe the characteristics of rod and cone functions in rat models for congenital stationary night blindness (CSNB) and retinal cone dysfunction (RCD). Methods. Rod and cone function were isolated by recording the rod-/cone-driven flicker and blue light flicker electroretinograms (ERGs). Results. During dark adaptation, the amplitudes of flicker ERGs in CSNB rats were lower than t...

متن کامل

The spatial properties of opponent-motion normalization

The final stage of the Adelson-Bergen model [J. Opt. Soc. Am. A 2 (1985) 284] computes net motion as the difference between directionally opposite energies E(L) and E(R). However, Georgeson and Scott-Samuel [Vis. Res. 39 (1999) 4393] found that human direction discrimination is better described by motion contrast (C(m))--a metric where opponent energy (E(L)-E(R)) is divided by flicker energy (E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2012